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ABSTRACT

Multiple techniques have been developed to model the temporal evolution of infectious
diseases.  Some of these techniques have also been adapted to model the spatial evolution
of the disease.  This report examines the application of one such technique, the SEIR
model, to the spatial and temporal evolution of disease.  Applications of the SEIR model
are reviewed briefly and an adaptation to the traditional SEIR model is presented.  This
adaptation allows for modeling the spatial evolution of the disease stages at the individual
level.  The transmission of the disease between individuals is modeled explicitly through
the use of exposure likelihood functions rather than the global transmission rate applied
to populations in the traditional implementation of the SEIR model.  These adaptations
allow for the consideration of spatially variable (heterogeneous) susceptibility and
immunity within the population.  The adaptations also allow for modeling both
contagious and non-contagious diseases.  The results of a number of numerical
experiments to explore the effect of model parameters on the spread of an example
disease are presented.
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INTRODUCTION

The term "epidemic process" can be applied to a broad class of conceptual/numerical
models that are used to characterize the spread of a condition through a population.
Examples of epidemic processes include the spread of a contagious disease through a
human population, the spread of a wildfire across a region of land, and the spread of a
plant virus through an agricultural area.  At the basis of all these applications is the
transmission of the condition (e.g., disease, fire) from one object (individual or tree) to
another, or to multiple objects (people or trees).

One class of models that has proven useful for describing epidemic processes is the SEIR
model.  The SEIR model describes four discrete states of an epidemic: Susceptiple,
Exposed, Infectious and Recovered.  Infectious individuals spread the disease to the
susceptible population.  Those in the susceptible population to which the disease is
transmitted become exposed and after a period time, the incubation period, these
individuals become infectious.  Individuals remain infectious for a period of time, the
infectious period, and then these individuals recover.  In the majority of the SEIR model
applications, the recovered individuals are considered to be immune to the disease for all
remaining time.

The SEIR model has been used extensively to examine the temporal evolution of
diseases.  The origins of the SEIR model with applications to epidemiology go back to
the Hamer-Soper model in the early 20th century (see: Hamer, 1906; Soper, 1929; and
discussion in Grenfell, 1992).  Modern applications of the SEIR model to epidemics
began with the work of Bartlett in the 1950's (e.g., Bartlett, 1957).  Much of the current
work in the application of the SEIR model to understanding epidemics is focussed on
determining the processes responsible for chaotic behavior in epidemics (e.g., Rohani, et
al., 1999; Earn et al., 1999).  A long-term data set (> 50 years) of the incidence of
measles epidemics in England has been used for both development and verification of the
SEIR model by a number of authors (e.g., Bartlett, 1956; Grenfell, 1992; Bolker and
Grenfell, 1996).  As pointed out by Bolker and Grenfell (1996), the continued failure of
vaccination programs to eradicate measles in developed countries and the mortality rate
among children due to measles in developing countries has sparked this long-term
interest in modeling measles epidemics.

There are several motivations for this current study.  The most urgent driver is the
necessity to simulate syndromes, signs and symptoms, or “S3” data at the individual
patient level.  These simulations will provide a hypothetical database against which
pattern recognition algorithms can be tested to determine if the S3 data and the
accompanying spatial and temporal coordinates of the data can discriminate outbreaks of
the flu or other common diseases from infectious diseases initiated by terrorist
organizations.  This same approach could also be used to detect the first occurrence of a
disease in a location where it has not been previously recorded (e.g., the occurrence of
West Nile Fever in New York City in 1999).  Results of an SEIR model computed on a
discrete grid of individuals will be used as the basis of the spatial and temporal evolution
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of the S3 data set.  Eventually, actual S3 data from the RSVP project at Sandia National
Laboratories will be available as input to the pattern recognition portion of this project.
However, it is doubtful that the RSVP program will be able to provide both background
S3 data and the S3 data resulting from a bioterror attack.  Therefore, it may still be
necessary to simulate the S3 data resulting from a bioterror attack even after the RSVP
project becomes active.

The adaptations to the traditional SEIR completed in this study allow for the
incorporation of spatial variability in the susceptibility/immunity of the population.
Often, variability in these two population parameters is correlated with the ages of the
individuals in the population and the age segregation of the population may display
spatial variability.  Therefore, a second motivation behind the construction of this model
is to provide a tool for examining the effects of spatial variability in susceptibility and
immunity within a population on the transmission of an infectious disease.  Results of
model runs completed with spatially variable parameters will be compared to results from
the traditional SEIR model.

A third motivating factor in the development of an explicitly spatial SEIR model is the
desire to examine geographically coordinated, or patterned, inoculation efforts on the
spatial and temporal extent of a bio terror attack on a population.  As an example, the
concept of “ring vaccination”, or vaccinating in a ring around the known areas of disease
is generally credited with wiping out small pox in Africa.

TRADITIONAL SEIR MODEL

A number of authors have invoked the SEIR model to describe the temporal evolution of
an infectious disease.  There are subtle variations on the implementation of the SEIR
model from one reference to the next.  For consistency, the implementation used in Earn,
et al. (1999) is followed here.

The SEIR model describes the progression of a disease through four stages: Susceptible,
Exposed, Infectious and Recovered.  This progression can be thought of as a simple, non-
reversible, Markov chain where the state at time t+1 is solely a function of the state at
time t.  A set of difference equations models the progression of a disease through a
population, or some fraction of a population.

The first stage is the susceptible stage, S, and the number of susceptible individuals in a
population changes according to:

N
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ν
+
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where t is time [T, denotes the units of the variable with T being time], ν is the per capita
birth rate [1/T], β is the rate of disease transmission between individuals [1/T], µ is the
death rate [1/T] and I, S and N are the current number of infectious, susceptible and total
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individuals in the population .  In the traditional application of the SEIR model, β is the
product of the inverse of the mean infectious period, γ  [1/Τ], and the reproductive ratio
of the infection, Ro [unitless].  The reproductive ratio is defined as the number of newly
exposed individuals per infectious individual.  The mean infectious period, 1/γ [T] is the
average amount of time an infectious individual is able to expose susceptible individuals.
The reproductive ratio is discussed further below.

The second stage of the disease is the exposed stage, E, with changes in this stage defined
by:
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where σ is the inverse of the mean incubation, period [1/T] and E is the number of
exposed individuals in the population.  The mean incubation period, 1/σ [T], is the
average period of time an individual remains in the exposed, E, state.  This time period
from being exposed to being able to expose other susceptible individuals may include the
time during which the patient becomes symptomatic.

The third stage of the disease is the infectious, I, stage.  Changes to the infectious
members of the population are defined as:
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The final stage of the disease is the recovered stage, R:

RI
t
R

µγ −=
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∆

For the results presented in this report, it is assumed that once an individual reaches the R
stage of the disease, that individual is completely immune to the disease.  In the case of a
fatal infectious disease, the members of this class are not recovered, but deceased.

It is noted by Earn et al. (1999) that if β is constant and Ro > 1, these equations lead to a
stable equilibrium.  This equilibrium may include the case where the disease spreads
through the entire susceptible population and the equilibrium state is where all intially
susceptible individuals have reached the recovered stage.  If the β parameter varies
seasonally, it is possible to get a broad range of dynamic behavior over multiple year time
spans.  Periodicity is often entered into the above equations through the use of a periodic
disease transmission rate, β(t).  The periodicity is generally tied to the school year
calendar with high contact rates during the school year and lower rates during summer
vacation.  It is noted here, that for the purposes of simulating infectious disease over the
several months long time span of interest, the time span of a single bio terror attack, the
above equations will not display chaotic behavior.
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Simulations

The traditional SEIR model is capable of simulating the temporal evolution of an
epidemic in a single population.  As an example, the aggregate disease stage curves for
the simulation of a contagious disease through a single population are shown in Figure 1.
In this simulation, the population size is 100,000, the values of ν,µ,1/σ,1/γ and Ro are set
to 0.0, 0.0, 8.0 days, 5.0 days and 5.0 respectively.  Setting the birth and death rates equal
to zero ensures a constant population size.  The initial fraction of exposed individuals is
0.001 and the length of the time step is set to 1.0 days.  All of the simulations done in this
report are deterministic- that is, all rates are single-valued and constant over time.

Figure 1.  Example results from the SEIR model showing the temporal evolution of an
epidemic through a population.

The results in Figure 1 show the evolution of the contagious disease through the entire
population in roughly 100 days.  Through the early stages of the epidemic and through
the peak of the epidemic, the fraction of the population that is exposed is larger than the
fraction that is infectious.  This result is due to the incubation period being longer than
the infectious period (8 days versus 5 days).  For this report, the fraction of the population
that is considered to be part of the epidemic at any one time is the sum of the exposed and
infectious individuals.  This sum is the number of individuals in the population that may
be symptomatic and would thus seek out medical attention at any given time.  In Figure
1, the fraction of the population in the epidemic is the sum of the Exposed and Infectious
curves.  The maximum proportion of the population that may be symptomatic occurs at
45 days when just less than one half the population (0.495) is exposed or infectious.
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A critical parameter in the SEIR model is the reproductive ratio, Ro.  This ratio is defined
as the number of newly exposed individuals per infectious individual.  If this ratio
remains below 1.0, the disease cannot propagate through the population and the disease
will run its course leaving a large fraction of the population still in the susceptible class.
Values of Ro greater than 1.0 will spread the disease through greater and greater fractions
of the population.  It is noted that in the traditional SEIR model, Ro is real valued.  The
idea of one individual infecting a fraction of another individual does not have meaning in
the real world or in a model where each individual is modeled discretely.

A set of simulations with the traditional SEIR model was done to examine the effect of
Ro on the equilibrium values of the number of susceptible and recovered individuals in a
population.  The values of 1/σ and 1/γ are 8.0 and 5.0 days respectively.  These values are
deterministic (fixed) and represent the generally accepted values for measles (see Earn et
al., 1999).  The birth and death rates are set to zero to ensure a constant population size of
100,000 and the fraction of the population that is initially exposed is 0.001.  The
simulations are run as a closed system-no new exposed or infectious individuals are
introduced to the system after the initial time step.  The simulations are run out to 200
times the sum of (1/σ  + 1/γ) or 2600 days, and the time step is set to 1.0 days.  This long
time insures that the population reaches an equilibrium status.  The results of this set of
simulations are shown in Figure 2.

Figure 2.  Proportion of Susceptible and Recovered individuals at equilibrium (2600
days) as a function of Ro.
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The results of these simulations demonstrate the threshold behavior of the population as a
function of Ro.  As Ro increases beyond 1.0, the disease is able to spread through the
population.  Larger values of Ro will cause a greater proportion of the Susceptible
population to experience the disease and eventually end up in the Recovered population
class.  Although not shown in Figure 2, Ro also controls the speed at which the disease
moves through the population.  For many bioterror agents, (e.g., anthrax) the disease is
not contagious at all and therefore Ro is zero.

The traditional SEIR equations as presented above have previously been adapted to
include spatial components.  Most commonly this adaptation has been made to include
interactions between one or more sub-populations.  These sub-populations can represent
different cities within the same country (see Rohani et al., 1999; Bolker and Grenfell,
1996); however, the communication between the sub-populations is only made with a
coupling parameter that is independent of the spatial location of the sub-populations or
the distance between the sub-populations.  Models that consider the interactions between
discrete individuals have not been examined in detail and have generally focussed on
simple nearest neighbor interactions (e.g., Market and Hare, 2000).  The next section
provides the basis for a SEIR model that describes the spatial and temporal evolution of
the disease across a population of discrete individuals.

SPATIAL-TEMPORAL SEIR MODEL

The traditional implementations of the SEIR model, as discussed above, consider the
population as a whole and do not consider the individual or the discrete nature of the
links between individuals.  As pointed out by Keeling and Grenfell (2000), the
application of the traditional SEIR model assumes that each infectious individual
interacts weakly with an infinite set of susceptible individuals.  This assumption can be
thought of as the population having an infinite uptake capacity for the disease.  This
assumption does not take into account any spatial structure in the susceptibility/immunity
of the population nor the transmission efficiency of the disease.  This section presents an
adaptation to the traditional SEIR model to examine the spread of a contagious disease
across a population of discrete individuals.

The progression of the disease and the state of the disease within any individual is
modeled on a two-dimensional grid where each grid cell represents an individual and the
entire grid represents the entire population being considered.  In future applications, this
grid of individuals could be mapped directly onto a spatial map of a city or region to
directly link individuals with addresses.  This type of mapping would also render some
cells inactive to represent regions without any population (major interchanges, forests,
etc.).  This direct mapping of individuals with geographic information is not included in
this report and is left to future applications.  The dense, fully populated grid used in the
following discussion is representative of a densely populated urban area.  The grid-based
approach will allow for relatively simple implementation of spatially variable
susceptibility and immunity as well as providing concise control of the transmission of a
disease between proximal individuals.
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The SEIR equations presented above need to be reformulated in order to operate correctly
on a population of discrete individuals rather than on a large population of perfectly
mixed individuals.  Instead of employing a global contact parameter, β, that describes the
rate at which the disease spreads through the entire population, the spread of the disease
must now be modeled as a series of interactions between individuals that are proximal to
one another in the two dimensional space.  In order to model this contact between two
discrete individuals, the concept of an exposure likelihood function, EL, is presented.

The likelihood of a susceptible individual being exposed to a disease during a single time
step is a function of the proximity of the susceptible individual to one or more infectious
individuals.  The likelihood of being exposed is also dependent on the range of personal
interactions per individual within the population (essentially how many infectious
individuals are in contact with the susceptible individual per time step) and the efficiency
with which the disease is transmitted.  There are a number of options available for
constructing the formulation of the likelihood function including nearest neighbor
difference equations and variations of the diffusion equation.  For this work a series of
functions used to model spatial covariance within the field of spatial statistics are used to
define the exposure likelihood functions.  These functions provide an extremely flexible
and computationally efficient means of defining the exposure likelihood of multiple
individuals in a grid-based population.

The first exposure likelihood function is based on the spherical model of spatial
covariance:
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where C is the maximum possible value of the likelihood at zero separation distance
between individuals.  For a fully efficient transmission in a single time step, C= 1.0.  The
a parameter is the range of the likelihood function and controls the radius of influence
over which a single infectious individual can transmit the disease.  The separation
distance between two individuals is h.  In the current application of the model, the grid is
composed of individuals and therefore h defines the proximity of the nearest infectious
individual to any susceptible individual.  The spherical likelihood function and the two
others described here are shown in Figure 3.

Two additional exposure likelihood functions are also defined for use in this study.
These two functions are the exponential exposure likelihood function:
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And the Gaussian exposure likelihood function:
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The three transmission likelihood functions with a range, a parameter, of 10.0 are shown
in Figure 3.  Note that the spherical model reaches a value of zero likelihood at the
specified range value of 10.0.  The exponential and Gaussian models reach the zero
likelihood value asymptotically.  The range parameter in the exponential and Gaussian
functions defines the distance at which the likelihood decreases to 5 percent of the initial
likelihood.  Additional information on the background and application of these functions
can be found in references dealing with geostatistics (e.g., Cressie, 1993; Deutsch and
Journel, 1998; Olea, 1999) where they are the complement of what are known as
variogram functions.

The likelihood functions defined above offer an extremely flexible means of modeling
the spatial spread of a disease through a population.  Because these functions are defined
by analytical expressions, they are computationally very efficient relative to modeling the
spread of the disease through the diffusion equation as has been done in other works.
Additionally, they offer a wide range of flexibility in terms of the radius of influence and
the efficiency of transmission from the infected individual to the susceptible individuals
in the surrounding population.  This flexibility is not limited to the simple functions
shown above, but can be extended to any linear combination of the above functions with
positive coefficients (see Olea, 1999, p. 80).  It is also noted that the range of the
likelihood functions need not be directionally isotropic.  If, for example, a pathogen is
transmitted along the direction of the prevailing wind, the ranges of the likelihood
functions can be modified to honor this preferred orientation of transmission.

As presented thus far, the exposure likelihood functions are written to be solely a
function of the separation distance between the infectious individual and any susceptible
individual.  These functions can also be adapted to be a function of the spatial location
within the population domain as well as a function of time (e.g., the disease may not
transmit with the same efficiency through the entire infectious period).  These adaptations
will be considered in future work.
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Figure 3.  Comparison of the three exposure likelihood functions.  The upper image
demonstrates full disease transmission efficiency from the infectious individual.  The
lower image shows the functions for an individual with only 50 percent efficiency in
disease transmission.
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If a susceptible individual, i, is close enough to an infectious individual such that the
likelihood of exposure reaches, or exceeds, 1.0 for that susceptible individual, then that
individual moves out of the Susceptible and into the Exposed category:
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Because the EL function is defined per time step, the EL function for individual i must be
summed over the entire infectious period (t =1 to t = 1/γ) to determine the likelihood of
exposure.

The SEIR equations must be rewritten to describe the progress of the disease at the
individual level.  For each stage, the likelihood of any individual moving to the next stage
begins at zero and is then incrementally increased as a function of exposure likelihood
function, the incubation period, or the latency period.

For example, the likelihood of individual i moving from the susceptible to the exposed
stage at time step j is termed S→Eij.  This likelihood is the sum of the likelihood at time
step j-1 and the value of the exposure likelihood function based on the proximity of any
infectious individual(s).  This likelihood is:

jijiji ELESES ,1,, +→=→ −

Note that the ELij function takes into account all infectious individuals within the range a
of the current susceptible individual.  There is no need to account for the proportion of
infectious individuals within the whole population as is done in the traditional SEIR
model.

Similarly the likelihoods for making the other two transitions are:
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Relationship Between Spatial Transmission and Ro

As discussed above, the reproductive ratio, Ro, is a global parameter that defines the
temporal evolution of a disease in a population.  This parameter is defined independently
of any spatial structure within the population that may affect the transmission of the
disease (e.g., a spatially variable susceptibility as a result of a spatially variable age-
distribution).  In this section, a linkage between the transmission likelihood functions and
Ro is developed and tested.

The definition of the reproductive ratio is "the average number of secondary cases caused
by an infectious individual in a completely susceptible population" (Anderson and May,
1992).  This is an input parameter to the traditional formulation of the SEIR model.  This
definition of Ro implicitly assumes (after Keeling and Grenfell, 2000) that the total
number of infectious cases is small relative to the number of susceptible individuals and
that the distribution of infectious and susceptible individuals is uncorrelated.

In the spatially discrete model developed here, the theoretical value of Ro can be
calculated as the total number of susceptible individuals within the range of influence, a,
of a single infectious individual that become exposed over the infectious period.  This is a
theoretical Ro value in that it assumes all individuals within the distance a are equally
susceptible and that each susceptible individual is only influenced by a single infectious
individual.  Obviously spatial variability in the susceptibility of the population, the
existence of nearby individuals in stages of the disease other than susceptible and
multiple infectious individuals within a distance of 2a will cause the actual value of Ro to
deviate from the theoretical value.  For further discussion of the assumptions inherent in
the definition of Ro, see Keeling and Grenfell (2000).

In order to gain some perspective on the relationship of the theoretical value of Ro as a
function of both the range of influence and the disease transmission efficiency a series of
calculations were done.  The theoretical value of Ro is calculated using various values of
the range of influence from 1.0 to 5.0 at three different transmission efficiencies (1.00,
0.75 and 0.50) with a spherical EL function.  The results of these calculations are shown
in Figure 4.

The results in Figure 4 show that across all three values of transmission efficiency, the
theoretical value of Ro can be roughly approximated by the square of the range of
influence for range values up to 4 individuals.  Figure 4 shows that in this discrete,
deterministic, spatial model with an isotropic (circular) range of influence, the theoretical
value of Ro can only be integer multiples of 4.  Notably absent from the theoretical
values of Ro are 16 and 32.  This absence is due to geometric constraints due to the use of
a circular EL on a square grid.  Also from Figure 4, the level of transmission efficiency
can significantly change the resulting value of Ro for the same range value.  As an
example, at a range of 3.5, the theoretical value of Ro is only 4 with a transmission
efficiency of 0.50 but rises to 20 for transmission efficiencies of both 0.75 and 1.00.
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Figure 4.  Theoretical values of Ro for different ranges of influence at three different
disease transmission efficiencies.  These results are for a spherical EL function.

Simulation Results

The spatial-temporal simulator is run to develop population curves and images of the
spatial-temporal evolution of a disease through a population.  The transmission efficiency
is set to 1.0 (100 percent) and two ranges of influence, 2.0 and 3.0 individuals, are used to
produce theoretical Ro values of 4.0 and 8.0 respectively.  For both simulations, the
population size is 40,000 and the initial fraction of the population that is exposed is
0.0025 (i.e., 100 people).  These initial, exposed individuals are randomly distributed
throughout the population.  The incubation and infectious periods are 5.0 and 8.0 days
respectively.  The birth and death rates are set to zero and the time step is 1.0 days with a
total simulation time of 250 days.  With the exception of the initial exposed individuals,
the entire population is susceptible with an initial likelihood of being exposed equal to
zero. The epidemic curves resulting from these two simulations are shown in Figure 5.
The epidemic curves show the sum of the exposed and infectious proportions of the
population as a function of time.
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Figure 5.  Epidemic curves created with the discrete spatial-temporal SEIR simulator for
two different theoretical values of Ro.

The two different ranges of influence for the EL function create epidemics that move
through the population at considerably different rates.  The peak of the epidemic for the
simulation with the theoretical value of Ro set to 4.0 is 74 days while the peak of the
epidemic occurs at 42 days when the simulation is run with a theoretical value of Ro
equal to 8.0.  The peak proportion of the population within the epidemic is also higher
(0.243 to 0.140) for the simulation with theoretical Ro set to 8.0 relative to the simulation
with the theoretical peak set to 4.0.  The spatial distribution of the stages of the disease at
the peak of the epidemic are shown in Figure 6 for both simulations.

A single time slice of the disease evolution, as shown in Figure 6, is not the ideal way to
view the spatial and temporal progress of the disease; however, several interesting results
can be seen in Figure 6.  At the initial time step, 100 individuals located randomly
throughout the grid are exposed.  The disease spreads out from these 100 individuals in a
diffusion-like manner (Figure 6).  This concentric spreading of the disease outward from
the initially exposed individuals is due to the spatially homogeneous susceptibility of the
population and the constant and deterministic specification of the SEIR parameters.  In
areas where multiple initially exposed individuals were located in close proximity, the
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spread of the disease is faster.  In these areas, the local value of Ro is higher than the
theoretical value due to the additive effects of multiple EL functions.

Figure 6.  Spatial distribution of the disease stages at the time of the peak of the epidemic
for simulations run with theoretical values of Ro equal to 4.0 (upper image) and 8.0
(lower image).

For the results in the upper image of Figure 6, the range of influence was specified as 2.0
and the theoretical value of Ro is 4.0.  These parameters create a relatively slower
moving epidemic and a short transition distance between the susceptible portions of the
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population and the recovered portions of the population.  The results in the lower image
of Figure 6 were created with the range of influence set to 3.0 giving a theoretical Ro
value of 8.0.  This epidemic moves through the population much faster than the one
simulated with a theoretical Ro of 4.0.  The lower image of Figure 6 indicates that the
larger range of influence spreads the epidemic faster and creates a wider transition zone
between the susceptible and recovered members of the population.  This wider transition
zone is the members of the population that are either exposed or infectious (the
epidemic).  The images in Figure 6 demonstrate that the larger the range of influence, the
larger the proportion of the population within the epidemic at any one time.

The results of the discrete spatial-temporal SEIR simulator developed here will be used to
develop individual disease time histories for every individual in the population.  One
example of these individual disease time histories is shown in Figure 7 for a randomly
located individual at grid cell location X = 50, Y = 50.   The time history in Figure 7 was
created in the simulation above with a theoretical Ro of 4.0.  Figure 7 shows the exposure
likelihood begin to increase from zero (Stage = 1) at about 47 days.  This is due to the
presence of an infectious individual within the range of influence of the example
individual located at (50,50).  The slope of this increasing likelihood changes through
time as infectious individuals are within a of the individual located at (50,50).  The
exposure likelihood reaches 1.0 at day 52 and the disease stage changes to 2 (Exposed).
From this point on, the slope of the line (the increase of the disease stage towards the next
stage) is linear.  This slope is 1/σ for the exposed stage (stage 2 to 3 in Figure 7) and 1/γ
during the infectious stage (stage 3 to 4 in Figure 7).

The disease time history as shown in Figure 7 is available for all individuals in the
population.  Probabilistic estimates of the different syndromes, symptoms, and signs that
an individual would develop at each stage of a specific disease can be derived from these
time histories.  These estimated syndromes, symptoms, and signs will comprise the S3

data that will go into the pattern recognition portion of this project.  Techniques for
determination of the probabilistic estimates of the S3 data will be completed in the future
and be linked to the time histories produced by the discrete spatial-temporal SEIR
simulator.

One attribute that may prove useful in discriminating one disease from another in the
pattern recognition phase of this project is the temporal derivative across the population
domain.  For the finite time stepping scheme used here, the temporal derivative for
individual I is simply:
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Figure 7.  Disease progression time history for an example individual located at (50,50).
The numbers on the Y-axis define the disease stages: 1= S, 2 = E, 3 = I, 4 = R.

where stagej and stagej-1 are the levels of the disease stage (see Figure 7) at time steps j
and j-1 and ∆t is the length of the time step.  The differences in the temporal derivative
for the time step corresponding to the peak of the epidemic are shown for the simulations
created with theoretical values of Ro equal to 4.0 and 8.0 in Figure 8.  In general, the
larger value of Ro produces lower values of the derivative and a wider band of non-zero
values.
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Figure 8.  Temporal derivative values across the population domain at the time step
corresponding to the peak of the epidemic for the simulations with the theoretical value
of Ro equal to 4.0 (upper image) and 8.0 (lower image).
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Spatial Variability

One attractive advantage to developing a spatial temporal simulator that works on a
discrete grid of individuals is that environmental information that is available over the
same spatial domain and that may effect the spread of the disease can be readily
incorporated into the model.  A simple example of this is demonstrated below with
information on the spatial variability of individual susceptibility across the domain.  This
spatial variation in susceptibility may be due to variation in the ages of the individuals or
other factors.

Spatial variation in the susceptibility of the individuals is simulated by drawing uniformly
distributed random numbers between –1 and +1 and assigning these random numbers as
the likelihood of being exposed.  In the simulations discussed previously in this report,
the initial exposure likelihood of all individuals was set to zero across the entire domain
(with the exception of the small fraction of initially exposed individuals).   By assigning
likelihood of exposure values between –1 and +1 through a random number generator,
the individual resistance to exposure can be much greater (-1) or essentially zero (1.0).  In
this example, the spatial variability in the initial susceptibility of the population is
uncorrelated from one individual to the next.

Two different simulations are run with the same pattern of spatial variation in the initial
level of susceptibility.  The parameters for both simulations are the same as those in the
previous section with the spatially uniform initial susceptibility with the exception of the
parameters controlling the exposure likelihood function.  For both of these simulations
with spatial variability in the degree of susceptibility, the efficiency of the disease
transmission is set to 0.20 (in the above simulations it was 1.00).  In the first simulation,
the range of the EL is set to 2.0, which, along with a transmission efficiency of 0.20,
defines a theoretical Ro of 0.0.  This value of Ro would not be high enough to propagate
the disease beyond the initially exposed cases if the initial susceptibility was set to zero at
all other cells.  In the second simulation, the range is increased to 3.0 but the transmission
efficiency of only 20 percent keeps the theoretical value of Ro at zero.  The epidemic
curves for these two simulations are shown in Figure 9.

As seen in Figure 9, the effect of adding spatial variability to the initial values of
susceptibility across the grid has an extreme effect on the propagation of the disease
through the population.  For both simulations the theoretical value of Ro is zero and with
a spatially uniform initial susceptibility, there would be no propagation of the disease.
The addition of spatial variation in the initial levels of susceptibility allows the disease to
propagate through the population.

The change in the range of influence from 2.0 to 3.0 also has a drastic effect on the
epidemic curve.  The range of 2.0 creates an epidemic that propagates extremely slowly
through the population.  The peak proportion of the population experiencing the epidemic
is less than 2 percent (peak occurs at 270 days).  Although not shown in Figure 9, at 1500
days, the proportion of the population that is susceptible is still near 10 percent.  This low
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range value coupled with spatial variation in the initial susceptibility level creates a
disease that reaches some sort of equilibrium and can be described as endemic.  The
increase in the range to 3.0 creates a much faster moving epidemic that peaks at 61 days
and moves through the entire population in less than 250 days.  Keep in mind that the
theoretical Ro value equals zero for both simulations.

Figure 9.  Epidemic curves for two simulations done with the same spatial variation in
the initial susceptibility values but different ranges of influence.  Note that both
simulations have a theoretical Ro of 0.00.

The spatial maps of the disease stage at the epidemic peaks are given for both simulations
in Figure 10.  The differences in the disease stage images at the epidemic peaks are
significant.  The image from the simulation created with a range of influence in the
exposure likelihood function of 2.0 (upper image, Figure 10) shows an extremely
irregular pattern in the distribution of exposed, infectious and recovered individuals.  The
results from a range of 3.0 (lower image, Figure 10) exhibit a more regular spreading
pattern away from the initially exposed individuals.
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Figure 10.  Disease stage images at the epidemic peak for simulations with spatial
variation in the initial levels of susceptibility.  The upper image results from an exposure
likelihood function with a range of 2.0 and the lower image results from an exposure
likelihood function with a range of 3.0.
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The results created with a range of 2.0 (upper image, Figure 10) show a number of
isolated recovered individuals.  These are individuals that were initially exposed, but
were unable to transmit the disease to any surrounding individuals due to these
surrounding individuals having a relatively low susceptibility (high immunity) to the
disease.  These individuals may be difficult to discriminate from individuals infected
during a bioterror attack with a non-contagious agent such as anthrax that is not capable
of spreading between individuals.

The significant differences in the epidemic curves shown in Figure 9 indicate the
profound effects that variability in the initial susceptibility of the population can have on
the spread of a disease.  The epidemic curve resulting from a range of 2.0 indicates an
endemic expression of the disease.  The fact that only a small proportion of the
population is infected at any given time would make it very difficult for a disease
surveillance network to readily identify this disease.

Summary

This report has summarized the progress made to date on the development of a discrete
spatial-temporal SEIR simulator.  The concept of the SEIR model that has been applied
to populations, or somewhat loosely coupled sub-populations, has been extended to work
on a population of discrete individuals located on a two-dimensional grid.  The
propagation of the disease across this grid and through time is controlled by an exposure
likelihood function developed for this project from spatial covariance functions used in
other fields.  The exposure likelihood function controls the spread of the disease from one
individual to surrounding individuals.  The connection between the exposure likelihood
function and the reproductive ratio, Ro, used in the traditional SEIR model has been
developed.  A series of numerical experiments using the discrete spatial-temporal SEIR
simulator was completed to determine the theoretical value of Ro corresponding to
different parameterizations of the exposure likelihood function.  The current version of
the discrete spatial-temporal SEIR simulator is capable of producing time histories of the
progression of the disease for every discrete individual.  These time histories will be used
as the basis for assigning the proper S3 data to each individual.  In order to provide the S3

data, the simulator will be linked to a probabilistic S3 estimation technique.  The addition
of spatial variation in the initial levels of susceptibility can drastically alter the spread of
the disease.  Spatial variation in the susceptibility pattern can also allow for the spread of
the disease even when the theoretical Ro value is zero.

Future Work

Several additional components of the discrete spatial-temporal SEIR simulator could be
added.  The first of these is to determine the SEIR parameters (e.g., σ, γ, Ro) for a
number of common diseases as well as diseases that might be the introduced in a terrorist
attack.  These parameters will be used to develop the spatial-temporal histories of these
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diseases across a discrete population.  These histories will be used to generate the S3 data
as input to the pattern recognition portion of the project.

It is necessary to keep in mind that any individual patient will probably only receive
medical attention once for the treatment of a more common disease.  For a fatal disease,
such as that introduced through a bioterror attack, the patient’s association with the
medical community will obviously be more frequent as the symptoms progress.  The
correct amount of decimation in time of the complete S3 data set produced by the discrete
spatial-temporal SEIR simulator must be determined.

The spatial coordinates of each individual in this model are provided at a finer resolution
than will be available through the actual collection of the S3 data that is limited to the
resolution of individual zip codes.  In order to simulate this level of spatial aggregation,
data from the discrete individuals will be accumulated within polygons of arbitrary shape
and size representing zip codes.  This technique could also be used to accumulate data at
the level of counties, school districts or other political boundaries.

Additional developments of the discrete spatial-temporal SEIR simulator will focus on
adding the capability to examine spatially variable levels of both susceptibility and
immunity to certain diseases.  This will be done with fairly simplistic random fields as
well as with spatially heterogeneous fields created through spatial estimation algorithms
borrowed from the field of geostatistics.  Several authors have proposed the concept of
spatially variable age structure controlling the spatial variability of susceptibility.
Information on the spatial distribution of ages within a major metropolitan area(s) could
be obtained and used in creating the spatially variable susceptibility maps for use in the
discrete spatial-temporal SEIR simulator.

In its current state, the discrete spatial-temporal SEIR simulator is capable of simulating
the spatial and temporal evolution of a single disease across a population.  It will be
necessary to simultaneously model different diseases in order to determine if the
proposed pattern recognition techniques can discriminate the outbreak of an anomalous,
terrorist-induced disease against a background of regular diseases such as influenza.
Using the current configuration of the simulator, it is possible to model the simultaneous
spread of independent diseases by running the simulator multiple times (once for each
different disease).  If the pathogen introduced by a terrorist organization operates
independently of any common background diseases, this approach will work.  However,
if the propagation of a terrorist induced pathogen is correlated with the stages of a
common disease, then an extension to the simulator will be necessary.  For example,
individuals who are suffering from the flu (in the exposed or infectious stage) may have a
much higher susceptibility to contracting another infectious disease including an infection
delivered by a terrorist organization.

In terms of the final use of spatial temporal modeling in this project, the patterns detected
through a pattern recognition procedure will be used as the basis for spatial and temporal
prediction of the spread of a disease.  Instead of using the SEIR model as written here, it
will be adapted to incorporate real-time information into a predictive model.  The
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incorporation of real time data will lead to a more data driven approach to modeling.  Ity
is proposed that this predictive model will use some combination of geostatistical
simulation algorithms to incorporate the real time data and the SEIR model to incorporate
the processes governing the spread of the disease.
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